Hot Springs, Hadaka no Tsukiai, Deming, and Current Issues in Information Technologies Management

September 19, 2009

 The moon glows the same:

It is the drifting cloud forms

Make it seem to change.

Attributed to a Japanese Priest [1]


Hot Springs and Hadaka no Tsukiai

Most memorable part of doing business in Japan during early 1990 was engaging in a heated discussion on the future of Japanese software industry while moon gazing in a very hot rotenburo (an outdoor hot spring)  in Kusatsu, with some Japanese colleagues,  and, drinking warm sake on a cold winter night.  The discussion was about a thesis that the Japanese manufacturing prowess will catapult Japanese companies into leadership in software.  While process innovation and human network management in a factory approach has helped develop, with high efficiency, a host of software such as compilers, databases and telecommunication software where standards are well developed, Japanese management had difficulty in rapidly adopting new innovations such as object oriented programming and graphical user interfaces.  Some of my Japanese colleagues wanted to find ways to transfer software innovations faster as they did with hardware innovations. Later this would translate into Japanese foray into object databases, video service networks and service management systems with 3D graphical user interfaces and so on.

Tsuki mi (moon gazing), Onsen (hot springs) and collectivism in Japan are closely woven into the fabric of Japanese culture. According to Scott Clark [2] “Japanese have transformed what was once considered a mundane though important and pleasurable practice into an expression of Japaneseness and tradition.  The bath and bathing are today both a familiar daily practice and an act of exoticism, the transformation of the ordinary into the extraordinary in a reflexive discourse on being Japanese.”  Japanese use sake and hot springs to build individual and collective relationships.  As Kuniko Miyanaga describes [3] “In Japan, two strangers, when introduced, go and drink together as a means of investigating one another.  Using alcohol as an excuse, they become outspoken about themselves, ask questions of each other, and, in general, deviate, from normal etiquette, by “exposing their bare selves.”  This is called hadaka no tsukiai, or having a naked relationship without formality or social ornamentation.  In doing this, the two have entered into an extremely informal situation; an important social rule is that such drinking occasion remains separate from all other occasions.  The two people involved remember what has transpired during the drinking occasions, but they do not reveal this when they have returned to more formal settings.  The mutual exploration will continue on the next informal occasion, again by drinking together.  In this way, the process of building intimacy is accelerated.”

Hot springs have played an important role in Japanese business.   A hot spring hotel in Hakone called Hotel de Yama, in a picture post card setting with Mount Fuji and Lake Ashi in view from its beautiful gardens, became very famous in the year 1950 by being associated with Dr. Deming’s lecture given to almost 80% of Japanese business leaders during that period [4].  That historical event changed the course of management in Japan and the rest of the world through the Total Quality Management (TQM) movement that followed.  In the mid 1990s, when we were implementing TQM at US WEST to improve telecommunication business processes, I appreciated its far-reaching impact in shaping the culture and behavior of management itself.

De Yama Hotel

L’Hôtel donne sur le lac Ashi

The Hakone hot spring in Hotel de Yama hosted the most powerful hadaka no tsukiai of the century that changed the course of history.  According to Jerry Bowles, [5] “A more likely reason for Ichiro Ishikawa’s Deming dinner is that he wanted Japan’s new industrial leaders to hear, from this tall, loud, terrifying gaijin–a slightly derogatory word used to connote anyone who isn’t Japanese–what has been Deming’s central message for the past 60 years;  that they–management–were the problem, and that nothing would get better until they took personal responsibility for change. And on that score Deming delivered.”  Ichiro Ishikawa not only founded JUSE but also chaired Keidanren, the country’s largest trade association, which exerted great influence in post-war Japan.  Deming’s message to substitute educated human power to compensate for lack of access to raw materials was music to the Samurai business leaders attending Deming’s lecture.

An interesting email, in 2007, from Tedd Snyder from Wisconsin, [6] points out the irony of cultural changes in Japan since 1950.  He had hoped to see the actual location where Dr. Deming met with the Japanese leadership. Unfortunately, the hotel staff that he spoke with was unaware of this aspect of the hotel’s history.  Mr. Snyder was curious whether any pictures exist from Dr. Deming’s sessions at the Hotel de Yama.  I am sure the Union of Japanese Scientists and Engineers (JUSE), which organized the conference in Hakone has preserved the historical memorabilia but the significance seems to have been lost at the hot spring site.  I wonder if Deming and Ishikawa discussed the importance and the significance of that event during a hot bath. What were the discussions that followed the meeting during dinner conversations?  Whatever they were, the event had a significant impact not only on the Japanese economy but also on the rest of the world.

Current Issues in Management

The world is a different place today.  There is a debate on the role of management in both Japan and the US.  The deep and painful “Lost Decade” Japan endured and the recent Wall Street “Melt-down”, both have in common, the busted real-estate and stock bubbles resulting from management failure.  Collusion between government policy makers and big business interests, loose credit policies, lack of regulatory oversight from government bureaucrats and short term easy profit pressures from stock market gamblers have all fueled a move toward deep scrutiny of the role of free markets, managed economies, individualism, collectivism, private greed and public good.  With their cultural biases toward individualism and collectivism respectively, USA and Japan are reacting in different ways.

Japanese people reacting against the government policies, bureaucrats and status quo chose to throw the ruling government out.  The new government has promised to focus on people’s interest as opposed to the business interest. A recent article by DPJ leader Yukio Hatoyama sharply criticizes the U.S. business model for growth that Japan had emulated during the postwar period, and promises a Japan free of what he calls the “unrestrained market fundamentalism and financial capitalism, that are void of morals or moderation” to better protect the finances and livelihoods of the Japanese people.  As Japanese population is graying and the employee pool is decreasing, Japan has started to expand its borders through outsourcing. Japanese businesses are embracing outsourcing to India, China and Vietnam in very large scale.    As exports start decreasing, business focus is turning inward as opposed to global ambitions.  R&D efforts have drastically reduced which is in total contrast to the days when Japan believed in increasing R&D budgets during recession.  The mood in R&D labs, where institutional knowledge exists to meet the challenges of the new world, is very depressing unlike that which prevailed in the early 1990s.  Participation of Japanese engineers in international conferences is noticeably less compared to the 1990’s.

USA has reacted to the recent crisis by the government taking a more active role than ever before. There is also growing momentum toward retracting from large outsourcing forays and focusing on new green, healthcare and IT initiatives inside the US.  Businesses are taking minimal risk. Even the Venture Community, whose raison d’être is to focus on high potential, long-term ventures, are focusing more on short-term sure-shot revenue generating ideas. One VC in Silicon Valley pointed out that the VC community is frozen with fear focusing more on incremental less-risky solutions rather than long-term solutions with potential 10X opportunity even though they think that the idea will happen in the long term.

While the first and second largest economies are struggling with tighter resources, and figuring out better management strategies, the evolution of networking technologies from POTS (Plain Old Telephone System), Internet based PANS (Pretty Amazing New Services) [7], and SANs (Storage Area Networks) to “Computing Clouds” is presenting a unique opportunity to radically improve the next generation IT infrastructure.  It is a new technology opportunity that requires convergence of telecommunication Next Generation Network (NGN) and IT infrastructure. Such an infrastructure will fundamentally alter the way executable business workflows are globally designed, developed and distributed, and radically improve the service economies worldwide.  The scope of such transformation exceeds the TQM impact that Deming and Ishikawa facilitated at Hotel de Yama.

The purpose of my blogs, is to suggest that the Japanese management today is at crossroads, very similar to the situation when they faced Deming in 1950 in Hakone.  Today, they have the accumulated institutional knowledge that they have preserved from their forays into POTS, PANS and SANs. They are equipped with the human resources and experience to create convergent computing cloud infrastructure, which requires both NGN expertise and current IT infrastructure hardware and operating systems expertise.  For example, large companies such as Hitachi, Fujitsu and NEC have both telecommunications and IT R&D groups that they have preserved while such institutional knowledge has been dismantled in the US by free market forces.  Another advantage these companies have is their hardware, systems and  human network management expertise.  This is in contrast to US companies that are making headway in cloud computing today such as Amazon, Google and Microsoft, which are purely software companies.  History shows that networking technologies evolve with a combination of hardware and software technologies making tradeoffs to meet the requirements of massive scaling and global interoperability.  My analysis suggests that a paradigm shift with 10X improvement can be achieved with slight modifications to server and storage devices to replace the current system administration model with real-time dynamic device management.  With these modifications along with NGN switching and mediation concepts, the computing clouds will be able to provide massive scaling, global interoperability and telecom grade “trust”.

However, the cultural, political, and economic changes that have occurred since the days of Deming and Ishikawa are profound and I would like to pose the question “Is current Japanese management up to the challenge?”  Will they be able to break the organizational barriers between telecommunications, server, network and storage silos within the same company and develop the convergent architecture?  They failed to do so in the past in bringing their telecommunications and computer divisions to work together and successfully compete with Cisco’s foray into the telecommunication-grade router market.  Will Fujitsu, Hitachi and NEC be able to collaborate with each other and service providers such as NTT to create the required mediation and management interface standards for the convergent Computing Clouds?  Will the Kasumi ga Seki cloud project provide a good opportunity to create and test the ideas of convergence.  This is the theme of my study, as a sequel to my thesis published in 1990 on current issues in Japanese management. I am looking for input, comments, and collaboration. I invite anyone with appropriate insight to participate.

In order to understand the requirements to make a profound change beyond the current incremental approaches of the Silicon Valley VCs and established server, networking and storage vendors with their vested stakes in the status quo, we need to examine the history and the evolution of networking technologies.  We also must acknowledge the economic and political realities that drive management behavior.  As Deming and Ishikawa, demonstrated, true leadership that causes paradigm shifts and enables global transformation by decreasing global entropy, usually transcends the political and economic realities and identifies true value for all the participants they rally to their cause.

From POTS, PANS and SANs to Computing Clouds – Current Issues in Information Technologies Management

POTS, PANS and SANs provide a fascinating study of the power of networking, scales of economies and the impact of global interoperability and massive scaling.  The evolution of switching, transmission and access technologies associated with POTS, PANS and SANs, the politics of their penetration and global impact on the economies of nations have taken different routes but with equally profound economic consequences.  POTS altered the communication landscape by connecting billions of humans anywhere any time at a reasonable cost.  It provided the necessary managed infrastructure to create the voice service, deliver it on demand and assure the connection to meet varying workloads and individual preferences with high availability, optimal performance and end-to-end connection security.  The service assurance set a standard known as “telecom grade trust”.

The Internet enabled the connection of billions of computing devices using the Internet Protocol (IP) network and enabled PANS that support today not only businesses but also a large consumer segment through the World Wide Web.  The growth of e-commerce and social networks are a direct consequence of this evolution with global impact.

The resulting explosion of data put a strain on the Information Technology (IT) infrastructure and the management of petabytes of data required a networked shared storage strategy that was addressed by the storage networking introducing custom hardware and software technologies.

With the advent of multi-CPU, multi-Core servers and server virtualization technologies, a new networking architecture called computing cloud is evolving that allows shared CPU, memory, IO, bandwidth and storage via the Internet or the Intranet to create and deliver services on a massive scale.  Virtual servers allow computing and storage resources made available to service developers for developing and delivering business and consumer applications to their customers using the computing clouds.  The computing cloud technologies are just evolving with several benefits already demonstrated but also many enhancements that are still lacking to make them massively scalable and globally interoperable with telecom grade trust [8].

Telecom grade trust today is the result of a long history of evolution of technologies and processes starting with AT&T.

According to AT&T [9], during 1894 to 1904, over six thousand independent telephone companies went into business in the United States, and the number of telephones boomed from 285,000 to 3,317,000. Many previously unwired areas got their first telephone service, and many others got competing companies. However, the multiplicity of telephone companies produced a new set of problems — there was no interconnection, subscribers to different telephone companies could not call each other. This situation only began to be resolved after 1913.  Theodore Vail in 1907 the then President of AT&T believed “that the telephone by the nature of its technology would operate most efficiently as a monopoly providing universal service. Vail wrote in that year’s AT&T Annual Report that government regulation, “provided it is independent, intelligent, considerate, thorough, and just,” was an appropriate and acceptable substitute for the competitive marketplace.”

From those monopolistic beginnings of AT&T to its remaking into today’s at&t through cycles of regulation and deregulation (accelerated by down-right fraud from its competitors such as MCI Worldcom), much has changed, but two things that have remained constant, are the universal service (access on a global scale) and the telecom grade “trust” (providing reliable, secure and high performance connection at a reasonable cost) that are taken for granted.

The Internet on the other hand evolved to connect billions of computers together anywhere, anytime from the prophetic statement made by J.C.R. Licklider [10] “A network of such [computers], connected to one another by wide-band communication lines [which provided] the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions.”.  Starting with three computers connected in 1969, the network grew to 213 by 1981.  The IETF was formed in 1985 and used the Request for Comments (RFC) process to develop and promote the standards that drove the growth of the Internet transforming the “send and pray” network to become reliable, secure and high performance network.  However, government support from DARPA and the telecommunication Act of 1996 played key roles again in nurturing and fostering innovation.

Storage networking and resulting NAS and SAN technologies have changed the dynamics of the enterprise IT infrastructure in a significant way to meet business application needs but were not able to meet the cost constraints dictated by the mass services market.  Wild fluctuations in the workloads make it impossible to provision for meeting peak-load requirements cost effectively.  This created a new class of service providers such as Amazon, Google and Microsoft to abandon the expensive and management intensive SAN strategy to develop an alternative storage strategy using commercially off the shelf (COTS) hardware and distributed web based service oriented software architectures.  The resulting divergence between IT infrastructure supporting Internet based consumer services such as social networking, email and video streaming applications and mission critical business applications requiring high performance and low latency tolerance is currently providing a new opportunity to reexamine the economics of IT management.  The divergence between the mass-market service infrastructure and traditional business application infrastructure took a wider turn with the introduction of server virtualization that allowed dynamic server provisioning, application migration, dialup, and dial down of application performance to meet wildly fluctuating workloads.

cloud evolution

Figure 1 shows the two divergent paths.  While the business application infrastructure (shown in the left) provides visibility into application availability, performance and security, the control is still labor and knowledge intensive.  The human latency in diagnosing and addressing application specific workload variations and varying business priorities often cost hundreds of thousands of dollars in software and service costs [11].  The silo approach the vendors provide is often called the Viagra approach with point solutions propping up old rickety systems that are not meeting the application centric management requirements demanded for mass scale deployment. Many of the software management tools end up as shelf-ware and service consultants swarm customer data centers to provide measurement, correlation, diagnosis and implementation services to optimize resource allocation to applications and address any contention issues with shared resources.  Often, best practices provided by server, network and storage vendors only optimize resources within their Silos.  These solutions often conflict with end-to-end optimization goals and business priorities that are different for different applications.  Diagnosis becomes even more complex (thus increasing the human latency) with virtualization layer in the server and virtualization in the storage to mask heterogeneous management systems and vendor devices.  While the Viagra approach provides recurring service revenues for equipment, software and service vendors and allows them to sell point solution software, it also increases the cost of visibility and control for the data center operators.  The Return on Investment (ROI) and Total Cost of Ownership (TCO) calculations the vendors demonstrate using their calculators often, drive local optimization in their silos while resulting in end-to-end optimization cost increases.

In addition, the server virtualization introduced to take advantage of multi CPU and multi Core servers to reap the benefits of energy conservation and better utilization with consolidation, adds another layer of I/O virtualization that neutralizes all the optimization strategies that expensive SAN storage vendors provide.

For these reasons, the new cloud providers have opted for cheaper Commercially Off-The-Shelf (COTS) hardware coupled with software approaches for simpler databases that are distributed, and service oriented software development environments for creating web based service applications.  However, while this approach reduces the management complexity, it does not address the visibility and control required to manage shared resource environments with telecom grade trust.  Application specific availability, performance and security management are wanting and piece meal solutions are being attempted which will again lead to similar issues with increase in complexity.

Recent announcement of virtual private clouds by Amazon is a first step in the right direction by allowing secured access to their virtual resources and infrastructure.  However, it addresses only access issue to hosted virtual servers.  For a computing cloud to go beyond being a pool of hosted virtual servers, and provide telecom grade trust at application or service level, it must address end-to-end connection management of computing resources from the CPU to the spindle.  While virtual servers have provided consolidation, flexibility, mobility, performance management and Disaster Recovery (by instantly replicating virtual servers) taking advantage of the new multi-CPU and multi-core physical servers, it has:

  1. Reduced visibility within a virtual server, through layers of virtualization increasing indirection between logical and physical resources,
  2. No control of application to spindle resources (dial-up or dial-down resources on demand) within each virtual server at run time to address changing workloads and business priorities, and,
  3. Increased cost and latency of diagnosing and resolving shared resource conflicts between multiple virtual servers

One question is which vendor cloud approach and lock-in is preferred?   As pointed out by Tim Bray [12],

“The small problem is that we haven’t quite figured out the architectural sweet spot for cloud platforms. Is it Amazon’s EC2/S3 ―Naked virtual white box‖ model? Is it a Platform-as-a-service flavor like Google App Engine? We just don’t know yet; stay tuned.”

Virtual server sprawl and their management have become more complex than physical server farm management. No cloud vendor has addressed virtual server sprawl management by providing visibility and control to assure telecom grade trust to both service development and service delivery.  Three factors raise two important questions:

  1. The inability, today, to easily dial-in or dial-out a virtual server from one cloud to another with telecom grade trust,
  2. The inability to dial-up or dial-down resources used by a single virtual server at run-time based on workloads, and
  3. The lack of visibility and control to resolve contention between shared resources dynamically, among many virtual servers, based on business priorities.

When management issues are accounted for, is the cloud (whether private or public) using current virtualization technology that depends on a whole virtual server replication and or migration, cost effective?  Are there better alternatives?

Paradigm Shift to Eliminate Waste in Information Technologies Management

While current state of the art has not yet assured confidence with telecom grade trust, if approached correctly, I believe that computing clouds present the last frontier in information technology revolution that will reduce complexity, provide global interoperability and telecom grade trust to networked computing resources.  Based on POTS, PANS and SAN experience, it is easy to see that reducing waste and providing telecom grade trust for accessing computing resources globally will have profound economic consequences.

The key to a paradigm shift is to recognize that the current administration and management paradigm that originated with server architecture is static and assumes that the resources (CPU, memory, bandwidth, storage capacity, throughput and IOPs) are allocated to an application at install time.  Changes to workloads and business priorities are assumed to occur at longer time scales, and administration can be performed off line.  This assumed that there were maintenance and administration times that are scheduled and the services the application provides can be interrupted during this period.

With high-speed networks and global connectivity, this assumption broke down and many management systems were added on to improve, the availability, performance and security as shown in the left side of figure 1.  However, the cost and flexibility required for mass scale deployment of services with wildly fluctuating workloads and business priorities has created the alternative computing cloud architecture on the right side of figure 1.

However, even the cloud architecture shown in figure 1 (on the right hand side), still assumes a static administration paradigm and still requires virtual servers to be provisioned at install time.  Configuration cannot be dynamically changed based on changing application workload profiles or business priorities at run time.  This makes application specific performance management, and storage administration very cumbersome, labor and knowledge intensive.  For example, when there is resource contention, one cannot stop one low priority application and divert its resources to another application with a higher business priority without disruption.  The complexity compounds when you have clustered servers (virtual or physical) with redundant paths to clustered storage devices.

Opportunity for New Approach to Develop Computing Clouds

Deming and Ishikawa taught us that removing waste and implementing far-reaching changes in an organization requires management collaboration that transcends organizational and geographical boundaries.

Return on investment must address not only the impact on share holders but also on impact on employment, customer intimacy and loyalty, impact on the ecosystem of suppliers, generation of tax revenues that facilitate better social fabric with national and global harmony and reduce entropy  through waste elimination.  The Japanese management understood this message very well when they started implementing TQM on a national level and global level.  Their emphasis on harmony (Wa),  Kyozon Kyoei (growing together) and their long term focus helped them become the second largest economy.

It is also interesting to note the contrast between 1950 and 2010.

In 1950, educated human resources were suggested to compensate for lack of access to raw materials at that time.  In 2010, the human resources are at a premium (especially in Japan caused by aging population and low birth rate) and it makes economic sense to eliminate IT management latency through automation that goes beyond incremental approach.  By creating the next generation server, network and storage infrastructure with dynamic resource control, the need for massive outsourcing is eliminated while creating a new paradigm for next generation computing clouds that will radically transform the services economy worldwide.

This will be analogous to Strowger’s switch eliminating many operators sitting in long rows plugging countless jacks  into countless plugs and reducing the cost of adding new subscribers that had risen in a geometric proportion. According to the Bell System chronicles, one large city general manager of a telephone company at that time wrote that he could see the day coming soon when he would go broke merely by adding a few more subscribers [13].  The only difference between today’s IT data center and central office before Strowger’s switch is that “fewer, but very expensive consultants, countless hardware appliances, and countless software systems that manage them” replace “many operators, countless plugs and countless jacks”.  In addition, we have to account for the shelf-ware and the human latency involved.

More recently, in a speech at the NASA Ames Research Center in California, federal CIO Vivek Kundra said that the government cannot continue to invest in traditional data centers to support its IT needs, citing a doubling in the energy cost at federal data centers between 2000 and 2006.  Of the $76 billion the government spends annually on IT, $19 billion he said goes toward infrastructure maintenance.

Both US and Japanese governments recognize the problem and are sincerely looking for solutions.

The question is  whether today’s Japanese corporate management and Silicon Valley VCs are ready to mobilize and remove waste and replace over-provisioning of resources with on-demand provisioning in current IT infrastructure with innovative solutions or continue their incremental approaches? Can they create next generation servers & storage to implement telecom grade trust through computing clouds with 10X improvement?  Who is the next Ishikawa with a vision to transform Japanese business in the time of need?  Will the changing political clouds in Japan nurture the seeds of innovation or will it take the planned economy such as China to drive the next wave of innovation?  Or will the Silicon Valley VCs beat them?  Is this an opportunity for a collaboration between individualism and collectivism to establish a balance  between corporate greed and public good, vendor-lock-in and choice fatigue with too many options, and unbridled free markets and fully regulated monopolies?  Did the Japanese management have a better working model with their collective approach before they followed American capitalism “that is void of morals or moderation” as Hatoyama put it?  Would the computing cloud also by the nature of its technology, operate most efficiently as a monopoly providing universal service with telecom grade trust, under government regulation, as Theodore Vail put it, “provided it is independent, intelligent, considerate, thorough, and just?”.  Who will lead the effort to tame the last frontier of computing clouds in Information Technologies by taking the risk and fighting current monopolies?  Is it the Silicon Valley VCs, Japanese Samurai business leaders or emerging technocrats in China?

Having participated in the POTS, PANS and SAN revolutions both in US and in Japan, I am keenly interested in watching how the current cloud revolution will play out.  One sure thing is that it takes a revolution – not an evolution to implement the productivity improvements that are possible and are absolutely essential.  If history is any guide, AT&T resisted digital switching and fiber optics revolutions and lost its technical leadership.  Japanese companies resisted IP networks preferring ATM (Asynchronous Transfer Mode) switches and missed leadership in Voice over IP revolution.  COBOL programmers resisted Object Oriented Languages which eventually led them to their extinction.  SAN franchises will resist commoditization of storage.   Server vendors will resist modifications to current virtualization strategy claiming that unified computing has arrived in bundled server, network and storage blades supporting pools of virtual servers with virtual I/O without addressing the management complexity issue.  Browser vendors will lead you to believe that the browser is the true distributed cloud operating system, Silicon Valley VCs will fund its research & development and Wall Street pundits will confirm it on Cable shows.

It will take another Deming and Ishikawa to convince management to go beyond their current franchises to harness the synergy of POTS, PANS and NGN and make real progress to reduce the true cost of IT management and reduce the entropy of the universe.  This means replacing current form of management intensive SANs and creating next generation servers and storage devices with dynamic FCAPS management and real time mediation.  This means creating real network centric distributed computing architectures and operating systems.  This means simplifying current management stacks by eliminating them.  This means creating new self discovering, self configuring, self monitoring, self healing and self optimizing distributed software systems replacing current high maintenance architectures that assume static resource administration patched with a string of evolutionary management systems.

I have spoken to data center managers who will discard their current SAN infrastructure if they had a better alternative in a wink.  In fact some have already started their transition plans:

“I don’t care who provides my infrastructure …even for my mission critical applications as long as I have visibility into the cloud and have control of my application response time, I/O, throughput, availability, latency and security…and I have the ability to adjust it based on my business priority and changing workloads”  – This quote is from an IT Business Alignment  Manager at a Large Energy Company who is actively re-architecting their datacenter to move away from their current storage strategy.  This is a strong invitation to create next generation computing clouds with telecom grade trust with visibility and control by next generation service providers.  This is a strong invitation to next generation infrastructure providers to commoditize servers and storage with network intelligence and real-time FCAPS management.  This requires expertise in not only Information Technologies but also POTS, PANS and NGN.

Will No 1 and No 2 leading economies recognize the strategic imperative and act as they did when Deming pointed out that the management was the problem or will they freeze with fear and watch, and wait to outsource their IT infrastructure as new players emerge after the current recession to take leadership, and run with it?  Only time will tell.  In the meanwhile, the moon will glow the same while giving the illusion of change through drifting cloud forms to the hot spring lovers practicing tsuki mi and hadaka no tsukiai.

Plus Ça Change, Plus C’est la Même Chose!

 References Used:

[1] James David Andrews, “Full Moon Is Rising”, p32

[2] Scott Clark. “The Japanese Bath: Extraordinary Ordinary”, Re-Made in Japan – Everyday Life and Consumer Taste in a Changing Society, Edited and with an introduction by Joseph J. Tobin, Yale University Press, 1994

[3] Kuniko Miyanaga, “The creative edge: emerging individualism in Japan”,


[5] Jerry Bowles, “obituary/tribute to W. Edwards Deming”, The Quality Executive, a monthly newsletter. January 1994


[7] Originally coined by Negroponte from MIT Media Lab “Pretty Amazing New Services are discussed in a book by Jean-Jacques Laffont, Jean Tirole, “Competition in Telecommunications”, MIT Press, 2001



[10]  J. C. R. Licklider (1960). Man-Computer Symbiosis.

[11] One company is offering a Health Check Service that will cost $25,000 to $50,000. It also plans to offer a product next quarter that will cost around $400 a switch port, plus the number of links being monitored.


[13] Almon B. Strowger and His Electric Telephone Switch

[a]Fault, Configuration, Accounting, Performance and Security management known as FCAPS has played a big role in reducing the Total Cost of Ownership and build Telecom grade “trust” in telephony.
wordpress stats


One Response to “Hot Springs, Hadaka no Tsukiai, Deming, and Current Issues in Information Technologies Management”

  1. […] [3]   Hot Springs, Hadaka no Tsukiai, Deming, and Current Issues in Information Technologies Management […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: